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Abstract

In a recent paper by Erdélyi et al. [Acta Mater. 58 (2010) 5639–5645] it is claimed by way of kinetic Monte Carlo simulations that the
actual critical nucleus size can deviate from the thermodynamical prediction by orders of magnitude due to effects of the difference between
the diffusivities in the matrix and the nucleus. Here these issues are critically re-examined both by simulations and theoretical considerations.
The growth probability curves for nuclei of different sizes are obtained for different diffusion asymmetries, which show no effect of diffusion
asymmetries on the critical size. The time evolution of the simulated nucleus sizes does show an effect, however: while the mean time until a
nucleus has either evaporated or grown is comparable, fluctuations on small timescales are much larger for faster diffusion in the nucleus. Finally it
is argued that a dynamical trapping effect is actually in conflict with the principle of detailed balance.
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1. Introduction

Classical nucleation theory explains the nucleation of grains
from supersaturated solutions in terms of thermodynamics alone:
the free energy of a system containing a nucleus is modelled by
the gain in free energy due to the transformation of the volume
within the nucleus, and the loss due to the interfacial energy. For
small nuclei, the latter term dominates, therefore the equilibrium
concentration of nuclei with a size of n particles falls with n
in this regime. At the critical size nc, however, the interfacial
energy loss when enlarging the nucleus by a given volume
falls behind the constant gain in voluminal energy, therefore
the equilibrium concentration of nuclei with n→ ∞ formally
diverges. The picture of nucleation is therefore that small nuclei
form due to spontaneous fluctuations, and most of them will
evaporate again. A few will reach the critical size, however,
and these will tend to grow and therefore consume the matrix
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supersaturation, as this lowers the free energy of the system.
The actual microscopic transition rates only enter the nucleation
rate; the critical size nc, which is the nucleus size where the
probability of growing equals the probability of evaporating,
only depends on thermodynamics in this model.

Erdélyi, Balogh and Beke [1] challenge this picture. They dif-
ferentiate the thermodynamically defined critical size nc, defined
as the size where the nucleus free energy reaches its maximum,
from the kinetically defined critical size n∗, which is defined
by equal probability for growth and evaporation [2]. They per-
formed kinetic Monte Carlo simulations with atom-vacancy
exchanges, and by choosing interaction potentials so as to get
different diffusivities in A- and B-rich domains (still within
values that are not unrealistic in alloy physics), but without
changing the thermodynamics of the system and therefore nc,
they obtained differences in n∗ of an order of magnitude. They
explain this observation by a trapping effect, in that the atoms
cannot be ejected from the nucleus sufficiently fast before new
ones arrive, even if this raises the free energy of the system.
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Essentially, the microscopic transition rates beat thermodynam-
ics. This interpretation seems to be at odds with the principle
of detailed balance and therefore allow the breaking of funda-
mental thermodynamic laws, which provided the motivation
for critically re-examining the issue, both by simulations and
theoretical considerations, as reported here.

2. Model

The interaction energies used by Erdélyi et al. [1] correspond
to a Hamiltonian of the system of

H(σ) =−V/4∑
~x

∑
∆~x

σ(~x)σ(~x+∆~x)+

M/2∑
~x

∑
∆~x

(
σ

2(~x)σ(~x+∆~x)+σ(~x)σ2(~x+∆~x)
)
, (1)

where σ(~x) is equal to 1, 0, or −1 if site ~x is occupied by
an A-atom, a vacancy, or a B-atom, respectively, and ∆~x enu-
merates the Z nearest-neighbour vectors. Note that for fixed
composition of the system and small vacancy concentrations the
energy of the system is only given by the first term, therefore
the thermodynamics are completely specified by V .

Above Hamiltonian has already been used for Monte Carlo
studies of nucleation and growth (e.g., [3–6]). For modelling
the microscopic dynamics, additional assumptions are needed.
In Ref. [5] the parameter M is used to control only the preferred
environment of a vacancy with a constant migration energy
for every kind of atom, whereas in the model of Erdélyi and
coworkers (which coincides with the choice of Refs. [3, 4]) the
saddle point in the energy landscape is when all the jumping
atom’s bonds are broken, and the migration energy is therefore
set equal to the energy necessary to extract the atom from the
crystal. While this broken-bond model indeed has a certain
stylistic appeal, it could be argued which of the two models
captures the physical situation more accurately, as the vacancy
formation energy depends more on valence electronic structure,
while the migration energy follows mainly from the core repul-
sion that the jumping atom experiences while passing through
the window [6, 7].

If the binding energy of an AA-pair is larger than a BB-pair’s,
as quantified by a negative parameter M, it is energetically more
favourable for the vacancy to be in a B-rich domain. In Erdélyi
and coworkers’ model, the effect of M < 0 on the respective
diffusivities is therefore twofold: it both raises the vacancy
concentration in the B-domain and the exchange frequency of
a vacancy-B-pair. These two effects are independent of each
other, as the Monte Carlo model used, e.g., in Ref. [5] gives only
the former, and it is easy to construct a model giving only the
latter. The connection between vacancy formation and migration
energy has been recognized previously as a constraint of the
present model [8].

In Ref. [1] the diffusion asymmetry m′ (which is the ratio
of diffusivities in pure A and B-matrices, given in orders of
magnitude) is related to the asymmetry of the pair potentials M
by

m′ =−2log10(e)ZM/kT, (2)

where Z is the coordination number (the misprint concerning
the role of log10(e) has been corrected here). This formula has
initially been derived for an ideal solid solution with diffusion
by direct atom exchange [9] and therefore misses both the ef-
fects due to the ordering energy V and the different vacancy
concentrations [8] (even though the authors seem to be aware of
the latter issue as evidenced by the pertinent discussion in Ap-
pendix A of Ref. [1]). The ratio of the vacancy concentrations
between pure A and B-matrices is exp(−ZM/kT ), which in a
first approximation enhances the diffusion asymmetry compared
to the value of Eq. (2). Also note that even in the case of no
diffusion asymmetry (M = 0), but still with positive enthalpy of
mixing (V > 0), the impurity diffusion constant is larger than
the self diffusion constant for both elements due to the fact that
an impurity atom is less tightly bound to the crystal than a host
atom. It therefore follows that mA = −mB 6= 0 (see also the
pertaining results obtained by Athénes et al. [3]), contrary to
Erdélyi and coworkers’ implicit assumption that mA = mB.

For a rigorous treatment of the diffusion asymmetries mA
and mB one would need to solve the five frequency models [10]
for both the cases of B-impurities in A and A-impurities in B
and compare to the respective self diffusion constants. This
is possible for the present model [8], but not the aim of this
publication.

3. Simulations

3.1. System

In the following a report of an attempt to reproduce the results
of Erdélyi and coworkers’ Monte Carlo simulations as closely as
possible, with the same simulation method and analysis unless
where noted, is given. They present a case for both an fcc- and
a bcc-system, but do not state for which system the simulations
were actually performed. However, as the maximum number of
neighbours in the legend of Fig. 3 is 8, it seems safe to assume
that they used a bcc-system. This assumption also fits better
with the quoted solubility (which is about 12.5% at the given
V/kT for a bcc-lattice, but only about 1.5% for a fcc-lattice, as
obtained by grand-canonical simulations).

Residence-time Monte Carlo simulations were performed on
a bcc-lattice in the canonical ensemble with one vacancy. The
simulation box consisted of 643 cubic bcc-cells with periodic
boundary conditions. Note that the resulting vacancy concentra-
tion of 1.9× 10−6 is within the range quoted by Erdélyi et al.
[1], who report no influence of the actual vacancy concentration
on the outcome. This was checked by performing additional
simulations with 1283 cells. The interaction parameter was
chosen as V/kT = 0.3626, in accordance with Ref. [1]. The
initial state was generated by defining a sphere of given radius,
then going over each site of the system and randomly setting
it to A with a probability of 85% if it was within the sphere or
15% if it was without (otherwise it was set to B), as it was done
by Erdélyi et al. [1]. In view of the fact that the quantitative
relation between the asymmetry in the pair potentials M and the
asymmetry in the diffusivities m′ is anything but trivial, I will
follow established practice [3–6] and directly quote the used M
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Fig. 1: Growth probabilities for various choices of M. Note that
the graph for M = −2V corresponds to less simulation runs and has
therefore a higher noise level.

in units of V . Note that by taking Eq. (2) at face value, Erdélyi
and coworkers’ m′ = 4 corresponds to M ≈ −1.56V . Time is
measured in units of MC-steps, where one MC-step equals N
vacancy jumps, with N = 219 the number of atoms in the system.
The cluster size was determined by a connectivity analysis as in
Ref. [1] for the bcc-case.

3.2. Results

At a minority concentration of 15%, the nucleation rate is
vanishingly small. At M = 0, only a few times during 5000 MC-
steps a cluster reaches a size of 300 atoms, but dissolves again
immediately. The evolution of the size of a given cluster can
therefore be followed by placing the cluster into the simulation
box and monitoring the size of the largest cluster. Once this
maximum size has dropped consistently below 300 atoms, the
initial cluster is considered to have dissolved. The criterion for
successful growth is set at 2500 atoms, as clusters above this
size are growing more or less monotonically.

If an initial cluster of 900 atoms grows during the simula-
tion run to a size of 2500 atoms (after which the simulation is
stopped), the matrix supersaturation drops by about 15%. Such
a change is in general not negligible, but as in the present case
only the behaviour of the cluster in a small range around the
critical size is of interest (which is on the order of 900 atoms),
it should be acceptable for the present purposes. This is corrob-
orated by the fact that no significant deviations are seen in the
simulations with the eight-fold simulation volume.

For a given M, a number of simulation runs were performed
with different initial cluster sizes. Every 10 MC-steps, the size
of the largest cluster was determined. The growth probability
Pg(n) is determined by the number of instances that the cluster
size was equal to n among the simulation runs that resulted in
a growing cluster divided by the total number of instances that
the cluster size was equal to n. With such an evaluation it is
possible to obtain rather smooth growth probability curves from
around 200 simulation runs per choice of M.

Fig. 1 presents the obtained growth probability curves for a
few choices of M. The reason for the failure to present simu-

lations over the whole range of M as probed in Ref. [1] lies in
the fact that the simulations become increasingly more CPU-
intensive for large diffusion asymmetries: while for M = 0 the
timescale for a critical cluster to become definitely sub- or super-
critical is on the order of 104 MC-steps, for M = 2V it is at about
106 MC-steps, and for M = −2V at about 2× 106 MC-steps.
Therefore, for M =−2V only 35 simulation runs have been per-
formed, which is the reason for the non-smooth appearance of
the pertinent graph in Fig. 1. For M =−3V , which corresponds
to the highest asymmetry reported in Ref. [1], an initial cluster
of 900 atoms had not fluctuated by more than 200 atoms after
5×106 MC-steps, at which point the simulation was aborted,
with stretches of 100 MC-steps without any size evolution at all.

The kinetically defined critical size n∗ is given where
Pg(n∗) = 0.5. Observing that the position of the intercept is
essentially given by how many simulation runs lead to a grow-
ing cluster, which follows a binomial distribution, the statistical
uncertainty is about 5% in the vertical dimension, and therefore
about 50 atoms in the horizontal dimension (120 atoms in the
case of M =−2V ). In the light of this, no significant influence
of M on the critical size, which is at about 900 atoms, can be
seen, in contrast to the results reported in Ref. [1].

These long timescales at high diffusion asymmetries are to
be expected: High asymmetries imply that most of the vacancy
jumps are self-diffusion events, therefore the fraction of vacancy
jumps that lead to an evolution of the nucleation state of the
sample vanishes. From this point of view it seems impossible
to observe an evolution of the cluster size in simulations with
diffusion asymmetries as large as those claimed in Ref. [1]. Also
observe that the diffuse interfaces reported by Erdélyi et al. for
higher diffusivities in the precipitates (which they identify as
the equilibrium shape) diametrically opposes the findings of
Roussel and Bellon [4], who found (non-equilibrium) diffuse
interfaces in the case of higher diffusivities in the matrix.

Samples of the temporal evolution of the nucleus sizes for
the highest simulated diffusion asymmetries are given in Fig. 2,
and here clearly an effect is to be seen: while the fluctuations on
timescales of 104 MC-steps are comparable, those on timescales
of 10 MC-steps show a much higher magnitude in the case
of positive M, that is faster diffusion in the nucleus. This is
not hard to understand: Due to the high effective temperature
the shape of the nucleus is rather diffuse, that is, it is only
weakly interconnected. For positive M, these connections are
rapidly shuffled around, because most of the atomic exchanges
happen within the nucleus. Parts of the nucleus are therefore
repeatedly detached and reattached. The random walk of the size
of the nucleus is therefore highly correlated: if it has dropped
due to the detachment of a cluster, it is likely that it will rise
again when this cluster is reattached. Over longer timescales,
these fluctuations therefore average out for the most part, so
that a system with positive M will show much larger short-
timescale fluctuations than a system with negative M, if both
have comparable timescales of growth and dissolution.
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Fig. 2: Detail of the time evolution of the nucleus size for two choices
of M.

4. Implications of detailed balance

Finally, I want to discuss here the implications of the principle
of detailed balance and demonstrate explicitly why a dynamical
trapping effect of solutes at the nuclei as claimed by Erdélyi
and coworkers is impossible. Consider two microscopic states
i and j with the conditioned transition frequency νi→ j, which
is defined so that νi→ jdt is equal to the probability that the
system transitions from i to j within the infinitesimal time dt
under the condition that the system is in state i, and let ν j→i
be defined analogously. For now, consider only neighbouring
pairs of states, i.e., where νi→ j 6= 0, for the case at hand this
would be states that are connected by a single vacancy jump.
To derive the relation between the two conditioned transition
frequencies we use the principle of detailed balance, which
states that there are no net fluxes between any pair of states
in equilibrium, that means back and forth transition rates are
equal piνi→ j = p jν j→i, where pi and p j are the equilibrium
probabilities for the system to be in state i or j, respectively
[11, 12]. As pi/p j = exp((E j−Ei)/kT ), it follows from above
condition that νi→ j/ν j→i = exp((Ei−E j)/kT ). Note that this is
a strict relation of microscopic quantities and holds irrespective
of whether the system is in equilibrium or not as seen from the
thermodynamic point of view.

Consider now the particular path of the system through con-
figuration space which is given by the system staying for a time
t0 in state 0, crossing over into state 1 within the infinitesimal
time dt, and then staying in state 1 for t1. Let the probability for
this path be P→. Define the probability of the inverse process,
which consists in staying in state 1 for t1, then crossing over to
0 and staying for t0, as P←. It follows that
P→
P←

=
ν0→1

ν1→0
= exp

(
(E0−E1)/kT

)
, (3)

as the other quantities cancel. For a two-jump path 0→ 1→ 2
it again follows that
P→
P←

=
ν0→1ν1→2

ν2→1ν1→0
= exp

(
(E0−E2)/kT

)
, (4)

and obviously also for paths composed of n jumps.
Eq. (4) was derived for any given choice of residence times

ti. By integrating over all choices it immediately follows that

it also holds for the quotient of the probabilities when only the
sequence of states, but not the respective residence times, are
specified. With a similar argument one can also sum over all
sequences of states connecting the initial and the final state,
so that the following statement follows from the microscopic
principle of detailed balance: Let i and j be arbitrary states of
the system (not necessarily neighbouring), with the respective
energies Ei and E j. Then the probability that a system that is
initially in state i evolves to j within time t is equal to the proba-
bility for the reverse evolution multiplied by exp((Ei−E j)/kT ),
irrespective of whether these states are near thermodynamic
equilibrium or not.

Detailed balance is a generally accepted principle and follows
from microscopical time reversal symmetry [13]. Note that it is
a stronger requirement than thermodynamics, as a circular net
flow A→ B→ C→ A would violate time reversal symmetry,
but not thermodynamics. The model as given by Erdélyi et
al. fulfills detailed balance, along with every model convention-
ally used in kinetic Monte Carlo studies. From the viewpoint of
solid state physics, detailed balance follows also from classical
transition state theory [14].

5. Discussion

Erdélyi and coworkers interpret their results by a trapping
effect for positive m′: They postulate that an A-atom that has
impinged on the nucleus cannot be ejected again sufficiently fast
before new ones arrive, because the jump frequency in the matrix
is much higher due to the microscopic transition rates given by
the kinetic parameters, even if this increases the free energy of
the nucleus. Specifically, they suppose that the trapped atom is
held in its state of higher energy by a bias between incoming
and exiting attempt frequencies.

Their error is that they equate the impinging rate with the
jump rate in the matrix and the ejection rate with the jump rate
in the nucleus, or, in other words, any jump that an A-atom on
the surface of the nucleus can make, including the jump back
into the matrix, happens with the same rate. This is physically
not realistic, and also in conflict with their model. The rigorous
derivation in the above section shows that, even while the paths
that lead from a state where the atom is dissolved in the matrix
to a state where it is attached can be arbitrarily complex when a
vacancy is involved, the ratio between attaching and detaching
frequency is given only by the difference in energy. Figuratively
speaking, in the geography of solid state physics there are no
one-way streets, atoms choose their way only due to the inclina-
tion (i.e., energetic differences). Therefore no such trapping as
understood by Erdélyi et al. [1] can occur.

The assumption of such a trapping effect would have a very
drastic consequence for the long-time limit of the system under
consideration: The configuration of minimum free energy for a
system in the miscibility gap is reached when it has decomposed
into an A-rich and a B-rich domain, separated by an interface (in
a simulation this can be realized as two slabs within the simula-
tion box with periodic boundary conditions). Thermodynamics
dictate that the concentration of B-atoms in the A-domain is
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exp(−EB/kBT ) for small concentrations, where EB is the en-
ergy that it costs to immerse a B-atom in the A-rich matrix. If
dynamical effects would lead to an impinging rate higher than
the ejection rate by a trapping effect, the B-concentration in the
A-rich domain would drop further, until this bias between the
two rates had been compensated by a depletion of the B-atoms
in the A-matrix that can impinge. The system would therefore
evolve to a steady state that is different from the thermody-
namical ground-state, i.e. the state of minimum free energy.
Therefore such a trapping effect would as a consequence violate
the second law of thermodynamics.

The argumentation above shall by no means imply that mi-
croscopic dynamics have no influence on precipitate nucleation
apart from a trivial scaling in time. In fact, it is well possible
that the greatly enhanced mobility of small (subcritical) nuclei
as observed by Soisson and Fu [6] results in the formation of
stable precipitates due to random coagulations (without having
to directly cross the free energy barrier of the critical nucleus),
or that the supersaturation of the precipitates reported by Rous-
sel and Bellon [4] gives a higher kinetical critical size. More
generally, for nucleation processes that happen far from equi-
librium, such as when a solid solution is quenched rapidly deep
into the miscibility gap, the availability of specific transition
paths can likely affect the nucleation kinetics. This is not the
case reported here, however: the very small supersaturation (a
minority concentration of 15% compared to a solubility of about
12.5%), the large critical nucleus size, and the very wide range
of sizes within which a nucleus has comparable possibilities for
growing or dissolving are all indications for the applicability of
equilibrium concepts. Therefore it seems unlikely that dynami-
cal effects could amount to changes of the kinetical critical size
of one order of magnitude as observed by Erdélyi and coworkers

for the present choice of parameters. This is supported by the
simulations reported here. The differing results of Erdélyi and
coworkers remain inexplicable.

6. Conclusion

In conclusion, I have shown here that the model given by
Erdélyi et al. [1] respects the principle of detailed balance, and
that a violation of this principle as manifested in the results of
Erdélyi et al. implies a violation of the second law of thermo-
dynamics. Even though the dynamical fluctuations displayed
by the size evolution of near-critical nuclei depend on the mi-
croscopic transition rates, an effect on the kinetically defined
critical nucleus size cannot be reproduced by simulations in the
probed range of parameter space.
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